// (C) 2001-2013 Altera Corporation. All rights reserved. // Your use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any output // files any of the foregoing (including device programming or simulation // files), and any associated documentation or information are expressly subject // to the terms and conditions of the Altera Program License Subscription // Agreement, Altera MegaCore Function License Agreement, or other applicable // license agreement, including, without limitation, that your use is for the // sole purpose of programming logic devices manufactured by Altera and sold by // Altera or its authorized distributors. Please refer to the applicable // agreement for further details. // (C) 2001-2010 Altera Corporation. All rights reserved. // Your use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any output // files any of the foregoing (including device programming or simulation // files), and any associated documentation or information are expressly subject // to the terms and conditions of the Altera Program License Subscription // Agreement, Altera MegaCore Function License Agreement, or other applicable // license agreement, including, without limitation, that your use is for the // sole purpose of programming logic devices manufactured by Altera and sold by // Altera or its authorized distributors. Please refer to the applicable // agreement for further details. // $Id: //acds/main/ip/merlin/altera_merlin_std_arbitrator/altera_merlin_std_arbitrator_core.sv#3 $ // $Revision: #3 $ // $Date: 2010/07/07 $ // $Author: jyeap $ /* ----------------------------------------------------------------------- Round-robin/fixed arbitration implementation. Q: how do you find the least-significant set-bit in an n-bit binary number, X? A: M = X & (~X + 1) Example: X = 101000100 101000100 & 010111011 + 1 = 101000100 & 010111100 = ----------- 000000100 The method can be generalized to find the first set-bit at a bit index no lower than bit-index N, simply by adding 2**N rather than 1. Q: how does this relate to round-robin arbitration? A: Let X be the concatenation of all request signals. Let the number to be added to X (hereafter called the top_priority) initialize to 1, and be assigned from the concatenation of the previous saved-grant, left-rotated by one position, each time arbitration occurs. The concatenation of grants is then M. Problem: consider this case: top_priority = 010000 request = 001001 ~request + top_priority = 000110 next_grant = 000000 <- no one is granted! There was no "set bit at a bit index no lower than bit-index 4", so the result was 0. We need to propagate the carry out from (~request + top_priority) to the LSB, so that the sum becomes 000111, and next_grant is 000001. This operation could be called a "circular add". A bit of experimentation on the circular add reveals a significant amount of delay in exiting and re-entering the carry chain - this will vary with device family. Quartus also reports a combinational loop warning. Finally, Modelsim 6.3g has trouble with the expression, evaluating it to 'X'. But Modelsim _doesn't_ report a combinational loop!) An alternate solution: concatenate the request vector with itself, and OR corresponding bits from the top and bottom halves to determine next_grant. Example: top_priority = 010000 {request, request} = 001001 001001 {~request, ~request} + top_priority = 110111 000110 result of & operation = 000001 000000 next_grant = 000001 Notice that if request = 0, the sum operation will overflow, but we can ignore this; the next_grant result is 0 (no one granted), as you might expect. In the implementation, the last-granted value must be maintained as a non-zero value - best probably simply not to update it when no requests occur. ----------------------------------------------------------------------- */ `timescale 1 ns / 1 ns module altera_merlin_arbitrator #( parameter NUM_REQUESTERS = 8, // -------------------------------------- // Implemented schemes // "round-robin" // "fixed-priority" // "no-arb" // -------------------------------------- parameter SCHEME = "round-robin", parameter PIPELINE = 0 ) ( input clk, input reset, // -------------------------------------- // Requests // -------------------------------------- input [NUM_REQUESTERS-1:0] request, // -------------------------------------- // Grants // -------------------------------------- output [NUM_REQUESTERS-1:0] grant, // -------------------------------------- // Control Signals // -------------------------------------- input increment_top_priority, input save_top_priority ); // -------------------------------------- // Signals // -------------------------------------- wire [NUM_REQUESTERS-1:0] top_priority; reg [NUM_REQUESTERS-1:0] top_priority_reg; reg [NUM_REQUESTERS-1:0] last_grant; wire [2*NUM_REQUESTERS-1:0] result; // -------------------------------------- // Scheme Selection // -------------------------------------- generate if (SCHEME == "round-robin" && NUM_REQUESTERS > 1) begin assign top_priority = top_priority_reg; end else begin // Fixed arbitration (or single-requester corner case) assign top_priority = 1'b1; end endgenerate // -------------------------------------- // Decision Logic // -------------------------------------- altera_merlin_arb_adder #( .WIDTH (2 * NUM_REQUESTERS) ) adder ( .a ({ ~request, ~request }), .b ({{NUM_REQUESTERS{1'b0}}, top_priority}), .sum (result) ); generate if (SCHEME == "no-arb") begin // -------------------------------------- // No arbitration: just wire request directly to grant // -------------------------------------- assign grant = request; end else begin // Do the math in double-vector domain wire [2*NUM_REQUESTERS-1:0] grant_double_vector; assign grant_double_vector = {request, request} & result; // -------------------------------------- // Extract grant from the top and bottom halves // of the double vector. // -------------------------------------- assign grant = grant_double_vector[NUM_REQUESTERS - 1 : 0] | grant_double_vector[2 * NUM_REQUESTERS - 1 : NUM_REQUESTERS]; end endgenerate // -------------------------------------- // Left-rotate the last grant vector to create top_priority. // -------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin top_priority_reg <= 1'b1; end else begin if (PIPELINE) begin if (increment_top_priority) begin top_priority_reg <= (|request) ? {grant[NUM_REQUESTERS-2:0], grant[NUM_REQUESTERS-1]} : top_priority_reg; end end else begin if (save_top_priority) begin top_priority_reg <= grant; end if (increment_top_priority) begin if (|request) top_priority_reg <= { grant[NUM_REQUESTERS-2:0], grant[NUM_REQUESTERS-1] }; else top_priority_reg <= { top_priority_reg[NUM_REQUESTERS-2:0], top_priority_reg[NUM_REQUESTERS-1] }; end end end end endmodule // ---------------------------------------------- // Adder for the standard arbitrator // ---------------------------------------------- module altera_merlin_arb_adder #( parameter WIDTH = 8 ) ( input [WIDTH-1:0] a, input [WIDTH-1:0] b, output [WIDTH-1:0] sum ); // ---------------------------------------------- // Benchmarks indicate that for small widths, the full // adder has higher fmax because synthesis can merge // it with the mux, allowing partial decisions to be // made early. // // The magic number is 4 requesters, which means an // 8 bit adder. // ---------------------------------------------- genvar i; generate if (WIDTH <= 8) begin : full_adder wire cout[WIDTH-1:0]; assign sum[0] = (a[0] ^ b[0]); assign cout[0] = (a[0] & b[0]); for (i = 1; i < WIDTH; i = i+1) begin : arb assign sum[i] = (a[i] ^ b[i]) ^ cout[i-1]; assign cout[i] = (a[i] & b[i]) | (cout[i-1] & (a[i] ^ b[i])); end end else begin : carry_chain assign sum = a + b; end endgenerate endmodule